Particle Swarm Optimization with Double Learning Patterns

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle Swarm Optimization with Double Learning Patterns

Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which ...

متن کامل

Feedback learning particle swarm optimization

In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSOQIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration coefficients are determined not only by...

متن کامل

Learning in Particle Swarm Optimization

This paper presents particle swarm optimization based on learning from winner particle. (PSO-WS). Instead of considering gbest and pbest particle for position update, each particle considers its distance from immediate winner to update its position. Only winner particle follow general velocity and position update equation. If this strategy performs well for the particle, then that particle upda...

متن کامل

Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)

So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...

متن کامل

Lagrange Interpolation Learning Particle Swarm Optimization

In recent years, comprehensive learning particle swarm optimization (CLPSO) has attracted the attention of many scholars for using in solving multimodal problems, as it is excellent in preserving the particles' diversity and thus preventing premature convergence. However, CLPSO exhibits low solution accuracy. Aiming to address this issue, we proposed a novel algorithm called LILPSO. First, this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2016

ISSN: 1687-5265,1687-5273

DOI: 10.1155/2016/6510303